Set as Homepage - Add to Favorites

日韩欧美成人一区二区三区免费-日韩欧美成人免费中文字幕-日韩欧美成人免费观看-日韩欧美成人免-日韩欧美不卡一区-日韩欧美爱情中文字幕在线

【porno izlemek cezasi turkiye】Webb telescope probes space explosion and makes fascinating discovery

Astronomers detected a potent space explosion this year and porno izlemek cezasi turkiyedirected the powerful James Webb Space Telescope at the cosmic blast.

This blast was a "gamma-ray burst" containing the most energetic type of light that's often generated by the collapse and explosion of enormous stars, events called supernovae. But the eruption in March 2023, dubbed "GRB 230307A," wasn't any ordinary gamma-ray burst. It was 1,000 times brighter than the typically observed burst, and the rays hit our instruments for a whopping two minutes. Usually, they last just two seconds.

In new research published in the peer-reviewed journal Nature, scientists conclude that a momentous type of explosion called a "kilonova" created the blast. And researchers suspect two curious objects called neutron stars — objects so incredibly dense that a teaspoon of neutron star weighs around a whopping 1 billion tons — collided, triggering the explosion.


You May Also Like

Crucially, astronomers theorize that important elements and metals, like gold and platinum, are forged in these outbursts. In this kilonova, the Webb telescope detected the rare element tellurium, which on Earth is rarer than platinum (and platinum is some 30 times rarer than gold).

It's a significant find. The same blast likely made other elements close to tellurium like iodine, "which is needed for much of life on Earth," NASA explains.

"Just over 150 years since Dmitri Mendeleev wrote down the periodic table of elements, we are now finally in the position to start filling in those last blanks of understanding where everything was made, thanks to Webb," Andrew Levan, an astrophysicist at Radboud University in the Netherlands and the University of Warwick in the UK who led the research, said in a statement.

SEE ALSO: Webb telescope just made tantalizing find on ocean world Europa

In the Webb telescope image below, you can see the source of the potent gamma-ray burst. That red dot is the distant kilonova. Other instruments, like NASA’s gamma-ray-detecting Swift observatory, allowed the researchers to pinpoint the source of the blast. To the right is the galaxy where these dense, massive neutron stars originated.

Below the image is a graphic showing how Webb detected the rare, heavy metal tellurium, which was likely forged in this outburst. One of Webb's most vital investigative instruments is its spectrograph, called NIRSpec (Near-Infrared Spectrograph). This instrument separates out the types of light coming from an object, similar to a prism separating visible light into a rainbow of colors. Certain wavelengths, or types of light, correspond to different elements or molecules. In this case, the Webb's spectrum showed clear signs that tellurium was present in that kilonova.

A view of the kilonova explosion (red dot on top left) responsible for creating the potent gamma-ray burst.A view of the kilonova explosion (red dot on top left) responsible for creating the potent gamma-ray burst. Credit: NASA / ESA / CSA / STScI / A. Levan (Radboud University and University of Warwick) A light emission spectrum from the James Webb Space Telescope showing evidence of tellurium.A light emission spectrum from the James Webb Space Telescope showing evidence of tellurium. Credit: NASA / ESA / CSA / Joseph Olmsted (STScI)

In the coming years, astronomers expected to find more rare, heavy metals, forged by explosions in the deep cosmos.

Mashable Light Speed Want more out-of-this world tech, space and science stories? Sign up for Mashable's weekly Light Speed newsletter. By clicking Sign Me Up, you confirm you are 16+ and agree to our Terms of Use and Privacy Policy. Thanks for signing up!

"Webb has certainly opened the door to do a lot more, and its abilities will be completely transformative for our understanding of the universe," Ben Gompertz, an astronomer at the University of Birmingham who worked on the research, said in a statement.

The Webb telescope's powerful abilities

The Webb telescope — a scientific collaboration between NASA, the ESA, and the Canadian Space Agency — is designed to peer into the deepest cosmos and reveal new insights about the early universe. But it's also peering at intriguing planets in our galaxy, along with the planets and moons in our solar system.

Want more scienceand tech news delivered straight to your inbox? Sign up for Mashable's Light Speed newslettertoday.

Here's how Webb is achieving unparalleled feats, and likely will for decades:

- Giant mirror: Webb's mirror, which captures light, is over 21 feet across. That's over two and a half times larger than the Hubble Space Telescope's mirror. Capturing more light allows Webb to see more distant, ancient objects. As described above, the telescope is peering at stars and galaxies that formed over 13 billion years ago, just a few hundred million years after the Big Bang.


Related Stories
  • The Webb telescope's new galactic picture is jaw-dropping
  • Webb telescope shows fantastic powers by zooming into alien planet
  • The best telescopes for gazing at stars and solar eclipses in 2024
  • How likely is a terrible asteroid impact in your lifetime?
  • There are mysterious "super-Earths" all over the galaxy

"We're going to see the very first stars and galaxies that ever formed," Jean Creighton, an astronomer and the director of the Manfred Olson Planetarium at the University of Wisconsin–Milwaukee, told Mashable in 2021.

- Infrared view: Unlike Hubble, which largely views light that's visible to us, Webb is primarily an infrared telescope, meaning it views light in the infrared spectrum. This allows us to see far more of the universe. Infrared has longer wavelengths than visible light, so the light waves more efficiently slip through cosmic clouds; the light doesn't as often collide with and get scattered by these densely packed particles. Ultimately, Webb's infrared eyesight can penetrate places Hubble can't.

"It lifts the veil," said Creighton.

- Peering into distant exoplanets: The Webb telescope carries specialized equipment called spectrographsthat will revolutionize our understanding of these far-off worlds. The instruments can decipher what molecules (such as water, carbon dioxide, and methane) exist in the atmospheres of distant exoplanets — be they gas giants or smaller rocky worlds. Webb will look at exoplanets in the Milky Way galaxy. Who knows what we'll find?

"We might learn things we never thought about," Mercedes López-Morales, an exoplanet researcher and astrophysicist at the Center for Astrophysics-Harvard & Smithsonian, told Mashable in 2021.

Already, astronomers have successfully found intriguing chemical reactions on a planet 700 light-years away, and as described above, the observatory has started looking at one of the most anticipated places in the cosmos: the rocky, Earth-sized planets of the TRAPPIST solar system.

0.1287s , 10040.4375 kb

Copyright © 2025 Powered by 【porno izlemek cezasi turkiye】Webb telescope probes space explosion and makes fascinating discovery,Public Opinion Flash  

Sitemap

Top 主站蜘蛛池模板: 2020国产成人综合网 | 青草青华人在线观看视频 | 中文国产成人精品久久麻豆 | 欧美临盆孕妇日本系列 | 久久精品午夜一区二区福利 | 国产福利电影一区二区三区 | 私密按摩师在线观看 | 亚洲精品高清国产麻豆专区 | 伦理剧床戏视频在线观看 | 在线观看av中文字幕不卡 | 国产一级一片免费播放视频 | 无码人妻一区二区三区精品视频 | 丁香五月婷婷中文无码精品 | www免费日本动漫在中国的传播 | 在线精品国精品国产不卡 | 久久中文字幕伊人 | 精品国产一区二区三区香蕉在线 | 另类制服丝袜国产亚洲第一页 | 东京道一本 | 国产人妖在线精品不卡av | 国产人妖视频一区二区 | 国产成人黄网站在线观看 | 国产成本人片无码免费 | 99久久综合九九亚洲 | 夜夜嗨色综合av麻豆精品 | 91日韩精品久久久久精品 | 2024年最新伦理片大全免费在线观看 | 成年无码av动漫全部免费 | 国产成人午夜精品55 | 果冻传媒一二三产区 | 亚洲精品成人AA片在线播 | 狠狠色伊人亚洲综合第8页 狠狠色伊人亚洲综合网站l | 99久久久无码国产精品性蜜奴 | 中文字幕日韩精品一区口 | 国产一级黄色网 | 91精品久久人人妻人人做 | 国产成人精品福利网站app | 日韩欧美爱情中文字幕在线 | 国产成人h在线视频 | 国产在线精品一区二区三区不 | 精品国产亚洲人成在线观看芒果 |